考虑了一类非自治中立型方程d/dt[x(t)-∑i-1^Npi(t)x(t-τ1)]+q(t)x(t)+∫∞^a(r)x(t-s)dr(t,x)=0非振动解的渐近性,其中Pi(t)(i=1,2,…,n),q(f)是非负函数,积分是Ricmann-Stieltjes意义下的积分。在函数α(t),r(t,s),p,(t)(i=1,2,…,n)和q(t)满足一定的条件下,得到了该方程的每个非振动解是最终无界的渐近性结果。该结论改进和推广了相关文献的某些已知结果。
This paper considers the asymptotic behavior of the nonoscillating solutions for a class of nonautonomous neutral equations d/dt[x(t)-∑i-1^Npi(t)x(t-τ1)]+q(t)x(t)+∫∞^a(r)x(t-s)dr(t,x)=0where pi(t)(i=1,2,…n),q(t) are nonnegative functions,and the integral in the above equations isin the sense of Riemann-Stieltjes. The asymptotic behavior results of each nonoscillating solution for this kind of equations are obtained when a(t),r(t,s), pi(t) (i= 1,2,…,n) and q(t) satisfy some adequate conditions. The results improve and generalize some known results in the related literature.