位置:成果数据库 > 期刊 > 期刊详情页
Studies on biomechanics of skeletal muscle based on the working mechanism of myosin motors:An overview
  • ISSN号:1006-2467
  • 期刊名称:《上海交通大学学报》
  • 时间:0
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术] O413.1[理学—理论物理;理学—物理]
  • 作者机构:[1]State Key Laboratory of Mechanical System and Vibration,Institute of Robotics, Shanghai Jiao Tong University,Shanghai 200240, China
  • 相关基金:Acknowledgments This work was supported by the National Basic Research Program of China (2011CB013203), the National Natural Science Foundation of China (61375098, 61075101), and the Science and Technology Intercrossing Research Foundation of Shanghai Jiao Tong University (LG2011ZD106).
中文摘要:

This paper presents a new method for estimating the isometric contraction force and the characterization of muscle’s intrinsic property.The method,called the energy kernel method,starts with converting the electromyography(EMG)signal into planar phase portraits,on which the elliptic distribution of the state points is named as the energy kernel,while that formed by the noise signal is called the noise kernel.Based on such stochastic features of the phase portraits,we approximate the EMG signal within a rectangular window as a harmonic oscillator(EMG oscillator).The study establishes the relationship between the energy of control signal(EMG)and that of output signal(force/power),and a characteristic energy is proposed to estimate the muscle force.On the other hand,the natural frequencies of the noise and the EMG signal can be attained with the energy kernel and noise kernel.In this way,the direct signal–noise recognition and separation can be accomplished.The results show that the representativeness of the characteristic energy toward the force is satisfactory,and the method is very robust since it combines the advantages of both RMS and MPF.Moreover,the natural frequency of the EMG oscillator is not governed by the MU firing rate of a specific muscle,indicating that this frequency correlates with the intrinsic property of muscle.The physical meanings of the model provide new insights into the understanding of EMG.

英文摘要:

This paper presents a new method for esti- mating the isometric contraction force and the characterization of muscle's intrinsic property. The method, called the energy kernel method, starts with converting the elec- tromyography (EMG) signal into planar phase portraits, on which the elliptic distribution of the state points is named as the energy kernel, while that formed by the noise signal is called the noise kernel. Based on such stochastic features of the phase portraits, we approximate the EMG signal within a rectangular window as a harmonic oscillator (EMG oscillator). The study establishes the relationship between the energy of control signal (EMG) and that of output signal (force/power), and a characteristic energy is proposed to estimate the muscle force. On the other hand, the natural frequencies of the noise and the EMG signal can be attained with the energy kernel and noise kernel. In this way, the direct signal-noise recognition and separation can be accomplished. The results show that the representa- tiveness of the characteristic energy toward the force is satisfactory, and the method is very robust since it com- bines the advantages of both RMS and MPF. Moreover, the natural frequency of the EMG oscillator is not governed by the MU firing rate of a specific muscle, indicating that this frequency correlates with the intrinsic property of muscle. The physical meanings of the model provide new insights into the understanding of EMG.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《上海交通大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:上海交通大学
  • 主编:郑杭
  • 地址:上海市华山路1954号15F
  • 邮编:200030
  • 邮箱:shjt@chinajournal.net.cn
  • 电话:021-62933373 62932534
  • 国际标准刊号:ISSN:1006-2467
  • 国内统一刊号:ISSN:31-1466/U
  • 邮发代号:4-256
  • 获奖情况:
  • 1996年全国优秀科技期刊奖,1992年、1996年、1999年国家教育部系统优秀科技期刊奖,2002年“百种重点期刊奖”,2003年百种中国杰出学术期刊,2004年教育部全国高校优秀科技期刊一等奖,2004年“百种重点期刊奖”
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:30903