基于严格的数值算法,研究了两全同玻色子在一维光晶格中的连续时间量子行走。文章研究系统初始态为最大纠缠态(即N00N态)的情形,着重考察不同的边界条件对两全同玻色子量子行走行为的影响。严格计算了粒子在光晶格中的密度分布随时间演化的过程。计算发现,三种不同的边界条件得到的结果没有明显差异。接着分别计算了量子行走过程中坐标空间与动量空间的两粒子关联函数。结果发现全同玻色子在通过边界之前,两粒子关联函数没有分别,但在通过边界之后,三种边界条件下粒子间的关联函数都呈现反聚束效应,特别地,开边界条件下动量空间关联函数在零动量附近出现一个极大的峰值。
We investigate continuous-time quantum walks of tWO indistinguishable bosons in one-dimension- al lattices by using exact diagonalization method. The two bosons are initially prepared in a maximally en- tangled state, i.e. NOON state. We calculate the time evolving of density distribution among the whole lat- tice and find that for three different boundary conditions, the results are almost the same. However,the dramatic differences are shown in the two-particle correlations after the two walkers passed through the lattice boundaries. Anti-bunching is found for all the three cases. Specially, for the open boundary case, a large peak emerges around zero momentum point.