位置:成果数据库 > 期刊 > 期刊详情页
多变量系统的耦合梯度辨识算法与性能分析
  • ISSN号:1001-0920
  • 期刊名称:《控制与决策》
  • 时间:0
  • 分类:TP273[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]江南大学轻工过程先进控制教育部重点实验室,江苏无锡214122, [2]江南大学物联网工程学院,江苏无锡214122
  • 相关基金:国家自然科学基金项目(61304138,61473136,61203111); 江苏省自然科学基金项目(BK20130163)
中文摘要:

针对多变量系统维数大、参数多、一般的辨识算法计算量大的问题,基于耦合辨识概念,推导多变量系统的耦合随机梯度算法,利用鞅收敛定理分析算法的收敛性能.算法的主思想是将系统模型分解为多个单输出子系统,在子系统的递推辨识过程中,将每个子系统的参数估计值耦合起来.所提出算法与最小二乘算法和耦合最小二乘算法相比,具有较少的计算量,收敛速度可以通过引入遗忘因子得到改善.性能分析表明了所提出算法收敛,仿真实例验证了算法的有效性.

英文摘要:

It is an issue that multivariable systems with high dimensions have many parameters, resulting in heavy computational costs in identification methods. Therefore, a coupled stochastic gradient algorithm is derived for multivariable systems based on the coupling identification concept. The identification model is decomposed into several single-output systems, and the parameter estimates are coupled during the subsystem identification by using the gradient search. The convergence properties are analyzed by using the martingale convergence theorem. Compared with the recursive least squares algorithm and the coupled least squares algorithm, the proposed algorithm has less computational load. The convergence rate can be improved by introducing a forgetting factor. Performance analysis verifies that the proposed algorithm converges.The simulation results show the effectiveness of the proposed algorithm.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《控制与决策》
  • 北大核心期刊(2011版)
  • 主管单位:中华人民共和国教育部
  • 主办单位:东北大学
  • 主编:张嗣瀛 王福利
  • 地址:沈阳市东北大学125信箱
  • 邮编:110004
  • 邮箱:kzyjc@mail.neu.edu.cn
  • 电话:024-83687766
  • 国际标准刊号:ISSN:1001-0920
  • 国内统一刊号:ISSN:21-1124/TP
  • 邮发代号:8-51
  • 获奖情况:
  • 1997年被评为辽宁省优秀编辑部,1999年期刊影响因子在信息与系统类期刊中排名第二位
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:32961