在分析多样性类型的基础上,重点对信息物理、二次优化、社会化网络和时间感知4种提高个性化推荐多样性的方法进行概括、比较和分析,接着总结推荐系统多样性的主要度量指标。最后,对未来有等深入研究的问题进行展望。研究指出:移动推荐系统的多样性和新颖性研究,信息物理方法应用于推荐系统领域的机理分析,推荐系统的时序多样性和计算量问题以及各种推荐算法的有效组合研究是未来需重点突破的方向。
This paper presents an overview of diversity in personalized recommender technology frum three dimensions including the types of diversity, four methods to improve the recommendation diversification which contain intormation-physics, quadratic optimization, social networking, time-aware recommendation, and evaluated metrics of diversity. The prospects for future development and suggestions for possible extensions are as follows : novelty and diversity in mobile recommender systems, the mechanism analysis of internet-based information-physics in recommender systems, temporal diversity and the amount of computation in recommender systems and the effective combination of various reeonunendation algorithms.