位置:成果数据库 > 期刊 > 期刊详情页
高分辨率遥感影像耕地分层提取方法
  • ISSN号:1002-6819
  • 期刊名称:农业工程学报
  • 时间:2015
  • 页码:190-198
  • 分类:S127[农业科学—农业基础科学]
  • 作者机构:[1]中南大学地球科学与信息物理学院地理信息系,长沙410083, [2]中国科学院西安光学精密机械研究所遥感与智能信息系统研究中心,西安710119
  • 相关基金:国家重点基础研究发展计划(973项目)(2012CB719906); 国家863计划主题项目(2012AA121301); 国家自然科学基金项目(41201428); 中科院光谱成像技术重点实验室开放基金(LSIT201406); 中国博士后科学基金项目(2012M511762); 测绘遥感信息工程国家重点试验室开放研究基金项目(13R01); 地理国情监测国家测绘地理信息局重点试验室开放研究基金项目(2013NGCM03)联合资助
  • 相关项目:基于粒度计算的高分辨率遥感影像耕地信息提取研究
中文摘要:

随着城市化建设进程的加快,城郊耕地经常会被开发为建设用地,甚至还会遭受非法占用的危险,这极大威胁了中国粮食安全。该文针对高分辨率遥感影像城郊耕地特点,提出了一种多尺度分层的耕地提取方法。首先,基于归一化植被指数(normalized difference vegetation index,NDVI)约束改进传统Harris角点检测方法得到建筑区概率密度图,并利用最大类间方差(Otsu algorithm,Otsu)分割去除复杂建筑区;然后,利用尺度选择工具(estimation of scale parameter,ESP)分析耕地占主导影像的多尺度分割结果,得到耕地较佳分割尺度并在该尺度下分割整幅影像;进而,利用形状、光谱信息初步检测出耕地对象,选择非建筑区的耕地与建筑区的非耕地样本,训练支持向量机模型并对不确定地物进行分类;最后,依据空间关系进一步判断图像对象,得到城郊耕地最终提取结果。试验结果表明,该方法能较高精度地从城郊区域的复杂背景中提取出不同类型、不同光谱的耕地目标。

英文摘要:

Farmland is the material base of human survival and development. Currently, China faces the serious situation that a large population corresponds to less average arable land during a long term. As Chinese urbanization process has accelerated in recent years, farmland in particular area- suburb is often developed to construction land, and even suffers the risk of being illegally occupied. With the implementation of geography national condition monitoring plan on a national scale, China is in urgent need of the development of efficient extraction and monitoring method of farmland for the protection and rational utilization of farmland. High-resolution remote sensing image contains rich and detailed ground information, and it can accurately reflect the suburb terrain types and their spatial distribution. However, house, road, drainage, tree are mixed with farmland in the high-resolution remote sensing image of suburb, and the suburban grounds' features are very similar in the spectrum, shape and texture characteristics, which leads the extraction of farmland to become very difficult. It is more feasible to extract the farmland from the non-construction area, therefore, the construction area is separated out from the image in the first place. The best segmentation scale suitable for farmland is determined according to the multi-scale segmentation in order to accomplish the extraction of farmland in an object-based approach, and then the whole image is segment in this best scale. Furthermore, the typical samples of farmland and non-farmland are selected to train the support vector machine(SVM) model. After the farmland has been classified via SVM, the spatial distribution relationship between segmented objects is taken into consideration to remove the false alarm objects and offset the omitted objects. Specifically, the proposed method consists of four steps: construction area removing, hierarchical farmland extraction, classification via SVM, and judgment by spatial distribution relationship. As a result, acc

同期刊论文项目
同项目期刊论文
期刊信息
  • 《农业工程学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国农业工程学会
  • 主编:朱明
  • 地址:北京朝阳区麦子店街41号
  • 邮编:100125
  • 邮箱:tcsae@tcsae.org
  • 电话:010-59197076 59197077 59197078
  • 国际标准刊号:ISSN:1002-6819
  • 国内统一刊号:ISSN:11-2047/S
  • 邮发代号:18-57
  • 获奖情况:
  • 百种中国杰出学术期刊,中国精品科技期刊,中国科协精品科技期刊工程项目期刊,RCCSE中国权威学术期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),英国农业与生物科学研究中心文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国食品科技文摘,中国北大核心期刊(2000版)
  • 被引量:93231