位置:成果数据库 > 期刊 > 期刊详情页
基于角度分布的高维数据流异常点检测算法
  • ISSN号:1006-2467
  • 期刊名称:上海交通大学学报
  • 时间:0
  • 页码:-
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]重庆邮电大学模式识别及应用研究所,重庆400065, [2]重庆长安汽车股份有限公司,重庆400023
  • 相关基金:国家自然科学基金资助项目(11247325); 重庆市科委自然科学基金资助项目(CSTC2013yykfC60005,CSTC2011BB4145,CSTC2013jcsf-jcssX0022,CSTC2013jcyjjq60002)
  • 相关项目:基于原子势的连续介质理论下的石墨烯纳米带的塑性形变研究
中文摘要:

为了有效检测高维数据流中的异常点,提出一种基于角度分布的高维数据流异常点检测(DSOD)算法.运用基于角度分布的方法准确识别高维数据集中的正常点、边界点以及异常点;构造了基于正常集、边界集的小规模数据流型计算集,以降低算法在空间以及时间上的开销;建立了正常集、边界集的更新机制,以解决大数据流的概念转移问题.在真实数据集上的实验结果表明,所提出的DSOD算法的效率高于Simple VOA算法与ABOD算法,并且适用于大数据流上的异常点检测.

英文摘要:

To improve outlier detection in high-dimensional data stream, a novel high-dimensional data stream outlier detection (DSOD) algorithm based on angle distribution was proposed. To identify the nor- mal point, border point and outlier accurately, the method of angle distribution-based outlier detection al- gorithm was employed. To reduce the computational complexity, a small-scale calculation set of data stream was established, which is composed of normal set, border set. To solve the problem of concept drift, an updated mechanism for the normal set and border set was developed. The experimental results on real data sets demonstrate that DSOD is more efficient than Simple variance of angles (Simple VOA) and angel-based outlier detection (ABOD) and is very suitable for the outlier detection of large data streams.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《上海交通大学学报》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国教育部
  • 主办单位:上海交通大学
  • 主编:郑杭
  • 地址:上海市华山路1954号15F
  • 邮编:200030
  • 邮箱:shjt@chinajournal.net.cn
  • 电话:021-62933373 62932534
  • 国际标准刊号:ISSN:1006-2467
  • 国内统一刊号:ISSN:31-1466/U
  • 邮发代号:4-256
  • 获奖情况:
  • 1996年全国优秀科技期刊奖,1992年、1996年、1999年国家教育部系统优秀科技期刊奖,2002年“百种重点期刊奖”,2003年百种中国杰出学术期刊,2004年教育部全国高校优秀科技期刊一等奖,2004年“百种重点期刊奖”
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:30903