基于波浪函数的 Fourier-Bessel 系列扩大,与可变 depth-to-width 比率由圆形的圆柱的峡谷事件飞机 SV 波浪散布的 2-D 的一个分析答案在这份报纸被推出。不同于另外的分析答案,这份报纸使用圆柱的功能的 asymptotic 行为这样,直接定义散布波浪的未经决定的系数避免在高周波的事件波浪下面解决线性方程系统和相关数字计算问题,从而拓宽分析答案的适用的频率范围。通过有存在分析答案的比较,这个答案的正确性被表明。最后,在更宽的频率乐队在圆形的圆柱的峡谷下面散布效果的事件飞机 SV 波浪被探索。
Based on Fourier-Bessel series expansion of wave functions, an analytical solution to 2-D scattering of incident plane SV waves by circular cylindrical canyons with variable depthto-width ratios is deduced in this paper. Unlike other analytical solutions, this paper uses the asymptotic behavior of the cylindrical function to directly define the undetermined coefficients of scattered waves, thus, avoiding solving linear equation systems and the related numerical computation problems under high-frequency incident waves, thereby broadening the applicable frequency range of analytical solutions. Through comparison with existing analytical solutions, the correctness of this solution is demonstrated. Finally, the incident plane SV wave scattering effect under circular cylindrical canyons in wider frequency bands is explored.