The maritime tropospheric duct is a low-altitude anomalous refractivity structure over the ocean surface,and it can significantly affect the performance of many shore-based/shipboard radar and communication systems.We propose the idea that maritime tropospheric ducts can be retrieved from ocean forward-scattered low-elevation global positioning system(GPS) signals.Retrieval is accomplished by matching the measured power patterns of the signals to those predicted by the forward propagation model as a function of the modified refractivity profile.On the basis of a parabolic equation method and bistatic radar equation,we develop such a forward model for computing the trapped propagation characteristics of an ocean forward-scattered GPS signal within a tropospheric duct.A new GPS scattering initial field is defined for this model to start the propagation modeling.A preliminary test on the performance of this model is conducted using measured data obtained from a 2009-experiment in the South China Sea.Results demonstrate that this model can predict GPS propagation characteristics within maritime tropospheric ducts and serve as a forward model for duct inversion.
The maritime tropospheric duct is a low-altitude anomalous refractivity structure over the ocean surface,and it can significantly affect the performance of many shore-based/shipboard radar and communication systems.We propose the idea that maritime tropospheric ducts can be retrieved from ocean forward-scattered low-elevation global positioning system(GPS) signals.Retrieval is accomplished by matching the measured power patterns of the signals to those predicted by the forward propagation model as a function of the modified refractivity profile.On the basis of a parabolic equation method and bistatic radar equation,we develop such a forward model for computing the trapped propagation characteristics of an ocean forward-scattered GPS signal within a tropospheric duct.A new GPS scattering initial field is defined for this model to start the propagation modeling.A preliminary test on the performance of this model is conducted using measured data obtained from a 2009-experiment in the South China Sea.Results demonstrate that this model can predict GPS propagation characteristics within maritime tropospheric ducts and serve as a forward model for duct inversion.