位置:成果数据库 > 期刊 > 期刊详情页
噪声抑制的高光谱图像虚拟维数分析
  • ISSN号:0490-6756
  • 期刊名称:《四川大学学报:自然科学版》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]四川农业大学,雅安625014, [2]中国电子科技集团公司第十研究所,成都610036, [3]电子科技大学,成都611731
  • 相关基金:国家973计划项目(2013CB733400);中央高校基本科研业务费项目(ZYGX2013J120);电子科技大学本科教育教学研究项目(2015XJYYB088)
中文摘要:

在高光谱数据降维过程中,通常用虚拟维数来表征数据的本征维数.经典的虚拟维数分析算法主要运用假设检验准则设定特征值门限,通过特征值判定来决定虚拟维数值.但是,在强噪声干扰下,经典算法不能有效分析出虚拟维数值.本文提出了一种噪声抑制的高光谱图像虚拟维数分析方法(NCVD),该算法通过对数据矩阵进行QR分解,减小了算法的运算量;采用滑动噪声检测窗口对噪声成分进行滤除,提高了估计维数的准确性;结合最小二乘算法对判别门限进行修正,使虚拟维数估计结果更具合理性;采用模拟数据和真实数据进行实验,实验结果证明,本文所提算法的可行性和较现有算法的优越性.

英文摘要:

In dimensionality reduction process of hyperspectral data, intrinsic dimension is normally characterized by virtual dimension. Classic algorithm mainly uses hypothesis-testing criterion to set eigenvalue threshold and correspondingly obtains virtual dimension. But under strong noises, it may not estimate very well. A noise constrained virtual dimension (NCVD) analysis method of hyperspectral imagery is proposed in this paper. It decreases the computational complexity by the QR decomposing; improves the accuracy of the estimated dimension by adopting sliding noise detection window to filter the noise; synthesizes the least squares algorithm to modify threshold for reasonable results. The experimental results prove the feasibility and superiority of the proposed algorithm by using simulated and real data.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《四川大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:国家教育部
  • 主办单位:四川大学
  • 主编:刘应明
  • 地址:成都九眼桥望江路29号
  • 邮编:610064
  • 邮箱:
  • 电话:028-85410393 85412393
  • 国际标准刊号:ISSN:0490-6756
  • 国内统一刊号:ISSN:51-1595/N
  • 邮发代号:62-127
  • 获奖情况:
  • 国家“双效”期刊,四川省十佳科技期刊,教育部全国高校优秀学报二等奖(1995,1999),四川省科技优秀期刊一等奖(1996,2000)
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,美国生物科学数据库,英国动物学记录,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:10542