位置:成果数据库 > 期刊 > 期刊详情页
小波分析与支持向量机结合的冬小麦白粉病遥感监测
  • ISSN号:1002-6819
  • 期刊名称:《农业工程学报》
  • 时间:0
  • 分类:TP79[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]安徽大学安徽省农业生态大数据工程实验室,合肥230601, [2]中国科学院遥感与数字地球研究所,数字地球重点实验室,北京100094
  • 相关基金:安徽省自然科学基金(1608085MF139);安徽省科技重大专项(16030701091);中国科学院国际合作局对外合作重点项目(131211KYSB20150034);国家自然科学基金国际合作项目(61661136004):国家重点研发计划项目(2016YFD030002)
中文摘要:

为利用遥感影像数据在区域尺度上实现快速、准确地监测小麦白粉病的发生、发展情况,该研究基于环境与灾害监测预报小卫星(HJ-1A/1B)数据对地表温度(landsurfacetemperature,LST)进行反演、提取4个波段反射率数据并构建7个植被指数。耦合K-mean和Relief算法对小麦白粉病遥感特征进行筛选。通过支持向量机(supportvectormachine,SVM)与小波特征(Gabor)结合SVM(GaborSVM)的方法分别建立河北省晋州市小麦白粉病发生监测模型,并对2种模型的监测精度进行对比。结果表明:归一化植被指数(normalizeddifferencevegetationindex,NDVI)、比值植被指数(simpleratioindex,SR)和地表温度3种特征参量可较好地表征小麦白粉病的发生情况,GaborSVM的总体精度达到86.7%,优于SVM的80%。因此,小波分析与支持向量机结合的方法可用于基于卫星遥感影像的大面积病害监测,对提高病害监测精度具有重要应用价值。

英文摘要:

Wheat powdery mildew is one of the main serious diseases for winter wheat. A fast and accurate monitoring of the disease at a regional scale plays a vital role in reducing yield loss. Remote sensing data has great advantages over traditional data in disease monitoring, including simpler operation, more real-time and higher resolution. In this study, Chinese HJ-1A/1B data with high revisit frequency and 30 m spatial resolution was used to inverse Land Surface Temperature (LST), extract four-band reflectance data, and build seven vegetation indices. These indices should be filtrated to improve accuracy of the model due to redundancy of them. Then, we implemented screening features with the combination of Relief and K-mean algorithm. Relief algorithm which can provide the basis for feature evaluation, so features were ranked in descending order judged by feature weights in preparation for the next process. Clustering accuracy obtained by K-mean algorithm. According to the weight of the feature, the features clustered in turn to perform K-mean analysis. Then the cluster with the highest precision was picked out, and we finally got the normalized difference vegetation index (NDVI), Simple vegetation index (SR) and surface temperature (LST) as the feature set. Wavelet feature can decompose the data in multi-scale and multi-direction, which can highlight the sensitive factor of vegetation index to a certain extent. Forty wavelet functions were constructed from five scales and eight directions, and made them convolve with features. Because there were too many wavelet features after convolved, the independent T-test samples were used to obtain the most sensitive wavelet feature of disease and the corresponding wavelet kernel function. After this process, three features corresponding to vegetation indices were available. These three wavelet features were used as input variables of the model. Support vector machine is a kind of machine learning method based on statistical learning theory. Its core idea is to

同期刊论文项目
同项目期刊论文
期刊信息
  • 《农业工程学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国农业工程学会
  • 主编:朱明
  • 地址:北京朝阳区麦子店街41号
  • 邮编:100125
  • 邮箱:tcsae@tcsae.org
  • 电话:010-59197076 59197077 59197078
  • 国际标准刊号:ISSN:1002-6819
  • 国内统一刊号:ISSN:11-2047/S
  • 邮发代号:18-57
  • 获奖情况:
  • 百种中国杰出学术期刊,中国精品科技期刊,中国科协精品科技期刊工程项目期刊,RCCSE中国权威学术期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),英国农业与生物科学研究中心文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国食品科技文摘,中国北大核心期刊(2000版)
  • 被引量:93231