设G是简单图,V(Mn(G))={u01-u02,…,u0p;u11,U12,…,u1p;…;un1,un2,…,unp};E(Mn(G))=E(G)∪{uiju(i+1)k|uojuok∈E(G),1≤i,u≤P,i=0,1,…,n-1),则Mn(G)称为G的广义Mycielski图,其中,V(G)={uoi|i=1,2,…,p).本文得到了Mn(Cm)的邻强边色数,其中,Cm是m阶圈,且m≡0(mod5)或m≡0(mod6).
Let G be a simple graph,Mn (G) is called a general Mycielski graphs ot G if V (Mn(G))= {u01-u02,…,u0p;u11,U12,…,u1p;…;un1,un2,…,unp};adn E(Mn(G))=E(G)∪{uiju(i+1)k|uojuok∈E(G),1≤i,u≤P,i=0,1,…,n-1). In this paper, the adjacent strong edge chromatic number of general Mycielski graphs of cycle Cm with order m is obtained,where m ≡ 0(rood 5) or m ≡ 0(rood 6).