提出了一种新的基于半导体光放大器非线性偏振旋转效应的全光采样方法,利用速率方程对全光采样的理论机理进行了阐述.借助该速率方程模型对采样器的输入偏振角、偏振控制器的附加相移和偏振合束器的偏振方向等参数进行了优化设计.计算结果表明,采样器传输曲线具有较好的线性工作范围,能够实现模拟光信号的高速全光采样,且其输入泵浦光功率小于1mW.由于该全光采样的工作原理与全光波长转换类似,而目前的全光波长转换工作速率可达320Gbps,因此该全光采样的采样速率可望达到上百GS/s .
We propose a novel all-optical sampling method using nonlinear polarization rotation in a semiconductor optical amplifier. A rate-equation model capable of describing the all-optical sampling mechanism is presented in this paper. Based on this model, we investigate the optimized operating parameters of the proposed system by simulating the output intensity of the probe light as functions of the input polarization angle, the phase induced by the polarization controller, and the ori- entation of the polarization beam splitter. The simulated results show that we can obtain a good linear slope and a large linear dynamic range,which is suitable for all-optical sampling. The operating power of the pump light can be less than lmW. The presented all-optical sampling method can potentially operate at a sampling rate up to hundreds GS/s and needs low optical power.