可靠显著察觉能习惯于快速并且有效地在图象定位对象。在这份报纸,为显著察觉的一个新奇算法基于 superpixels 聚类和立体声不同(SDC ) 被建议。第一,我们使用聚类方法分解给定的图象的改进 superpixels。然后,每 superpixel 的不同被一个修改立体声通讯算法计算。最后,把立体声不同与颜色对比相结合的一项新措施和空间连贯被定义评估每 superpixel 的显著。从实验,我们能看到有高不同的区域能得到更高的显著值,和显著地图与来源图象有一样的分辨率,在地图的对象有清楚的边界。由于 superpixel 和立体声不同信息的使用,建议方法是计算地有效的并且超过一些最先进的 colorbased 显著察觉方法。
Reliable saliency detection can be used to quickly and effectively locate objects in images. In this paper, a novel algorithm for saliency detection based on superpixels clustering and stereo disparity (SDC) is proposed. Firstly, we use an improved superpixels clustering method to decompose the given image. Then, the disparity of each superpixel is computed by a modified stereo correspondence algorithm. Finally, a new measure which combines stereo disparity with color contrast and spatial coherence is defined to evaluate the saliency of each superpixel. From the experiments we can see that regions with high disparity can get higher saliency value, and the saliency maps have the same resolution with the source images, objects in the map have clear boundaries. Due to the use of superpixel and stereo disparity information, the proposed method is computationally efficient and outperforms some state-of-the-art color- based saliency detection methods.