位置:成果数据库 > 期刊 > 期刊详情页
基于集成预测的稀有时间序列检测
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP311[自动化与计算机技术—计算机软件与理论;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]华南师范大学计算机学院,广州510631, [2]华南理工大学计算机学院,广州510640
  • 相关基金:国家自然科学基金资助项目(60574078)
中文摘要:

为了解决误判问题,从预测的角度给出了离群点的定义,并提出了预测可信度和离群度的概念;同时,提出采用置换技术来降低离群点对预测模型的影响,并提出了基于集成预测的稀有时间序列检测算法。针对真实数据集的实验表明,可信度和离群度的定义是合理的,稀有时间序列检测算法是有效的。

英文摘要:

From the view of forecasting, a novel definition of outlier in time series was presented, as well as the definition of the forecasting confidence and the degree of outlier. The technique of permutation was proposed to alleviate the impact of outliers upon the forecasting model. To solve the false alarm problem, the forecasting-based outlier detection algorithm was pres- ented. The experiments conducted on the real-world datasets show that definition of the degree of outlier is reasonable and the outlier detection algorithm is effective.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049