长链超支化聚合物(HyperMacs)凭借其含有大量的功能端基和可调控的链结构等优点已经引起国内外科研人员越来越广泛的关注。HyperMcs除了拥有超支化聚合物固有的低粘度、溶解性好、含有大量的功能性端基的特点外,同时拥有高剪切敏感性、熔体弹性、冲击强度和零剪切粘度,因而在药物载体、能量存储及传递和纳米催化剂等方面可能拥有更为广泛的应用。本文根据HyperMacs合成方法的不同,分别从迭代法和AB;线型大分子单体法两个主要方面对其研究进展进行了总结和评述,并在此基础上展望了该类聚合物的研究方向和发展趋势。
Long-chain hyperbranched polymers (HyperMacs) with well-defined and well-adjusted linear chains between branch points have received widespread attention in the macromolecule research due to their potential applications in various fields such as drug carrier, energy storage, and delivery, nanotechnology and catalysis. In this paper, we reviewed the various synthetic strategies {or HyperMacs: including iteration and ABx linear macromonomer apporaches. In addition, new research trends are expected based on the progress of this kind of polymers.