引入偏序集的相对极大滤子的概念,证明在任意条件交半格中一个滤子是相对极大滤子当且仅当它是滤子格的完全交不可约元。一个格是分配的当且仅当每一个相对极大滤子都是素滤子。随后研究了Heyting代数中相对极大滤子的刻画,最后定义和研究了完全并既约生成格。
On any posets,the relative maximal filters are introduced and studied.It is shown that in any conditional semilattice,a filter is relative maximal iff it is a completely meet-irreducible element of the filter-lattice;a lattice is distributive iff each relative maximal fiter is prime.A characterization of relative maximal filters in Heyting algebras is given.Lastly,completely join-irreducible generated lattices are introduced and strudied.