基于凸包的k局部超平面距离分类方法,通过改进k近邻算法在处理小样本问题时的决策边界而显著提高分类性能.但是,该方法对噪声和类的数目敏感,并且在一类样本"包围"另一类样本时,由于外围类凸包与内部样本的距离为零而导致分类错误.针对上述问题,提出了k子凸包分类方法,该方法融合了k近邻分类和凸包技术的优点,首先寻找测试样本的k近邻,然后在该邻域中计算测试样本到相应类的子凸包的距离,并根据距离大小来确定该测试样本的类别,有效克服了k局部超平面距离分类存在的不足.大量实验表明,文章提出的k子凸包分类方法在分类性能上具有显著的优势.