位置:成果数据库 > 期刊 > 期刊详情页
基于Hadoop平台的SVM_WNB分类算法的研究
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP301.6[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:南京邮电大学计算机学院,南京210003
  • 相关基金:国家自然科学基金资助项目(61171053)
作者: 黄刚, 李正杰
中文摘要:

SVM算法和朴素贝叶斯分类算法是对大量复杂数据分类中性能优秀的算法。然而它们的缺点使得分类效果受到了影响,而且传统的数据挖掘分类算法也无法满足对于海量数据的处理。针对这些问题,这里对传统的朴素贝叶斯算法进行了分析和改进,提出了SVM_WNB分类算法,并且在Hadoop云平台上对算法实现并行化处理,使其能够对大数据进行处理。实验验证,改进后的算法在准确性和效率等方面有明显提升,在大数据的分类上将会起到显著的效果。

英文摘要:

SVM algorithm and naive Bayesian classification algorithm are the good performance of classification algorithm for complex data classification. However, they also have significant drawbacks so their classification are influenced and the tradi- tional data mining classification algorithm can not meet the need of mass data processing. To solve these problems, this paper analyzed traditional naive Bayesian classification algorithm and raised improvement suggestions for it, brought forward the SVM_ WNB classification algorithm. Then it conducted a parallelization processing on Hadoop cloud platform so that it could process mass data. Finally, through experimental verification, the new algorithm has obvious improvement in terms of its accuracy and efficiency. It can be concluded that the algorithm can be applied to large data classification, and will play a significant effect.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049