位置:成果数据库 > 期刊 > 期刊详情页
基于SVM的酒店客户评论情感分析
  • ISSN号:1006-2475
  • 期刊名称:《计算机与现代化》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]江西农业大学计算机与信息工程学院,江西南昌330045, [2]江西农业大学软件学院,江西南昌330045, [3]江西农业大学江西省高等学校农业信息技术重点实验室,江西南昌330045
  • 相关基金:基金项目:国家自然科学基金资助项目(61562039,61363041)
中文摘要:

通过增加情感词典种类提高系统对网络词汇、表情符号进行分词和情感分析的准确性;以某酒店的客户评论为原始数据,提取正负向情感词的数量、否定词、程度副词以及特殊符号数量等文本特征后进行不同的特征组合,通过K重交叉验证和网格搜索算法找到SVM(支持向量机)算法的最优参数组合C和g。采用SVM对不同的特征组合进行训练测试并对每个组合的正确率进行分析,然后找出最适合用户评论情感分析的文本特征及特征组合。结果表明:在每个特征组合获取其最优的C和g参数组合的前提下,选用正负向情感词、否定词、情感分值、程度副词的特征组合测试正确率最高,达到93.4%。

英文摘要:

This paper improves the accuracy of word segmentation and emotion analysis of network vocabulary and expressions by increasing the variety of emotion dictionary. On the other hand, customer reviews of a hotel are used as the original data. After extracting the amount of text features, such as positive and negative words, negative words, the degree of adverbs and the amount of special symbols, we make different feature combinations, and hope to find the optimal combination of parameters SVM inclu- ding C and g through the k-fold Cross Validation and grid search algorithm. Training and testing different feature combinations by SVM and analyzing the correct rate of each combination, we find out the most suitable combination of text feature and feature a- nalysis which are used for study of user reviews of emotion. The results show that under the premise of satisfying the optimal com- bination of parameters C and g, the correct rate of the feature combination using positive and negative emotional words, negative words, emotion score and degree adverbs is the highest and reaches 93.4%.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机与现代化》
  • 中国科技核心期刊
  • 主管单位:江西省科学技术厅
  • 主办单位:江西省计算机学会 江西省计算技术研究所
  • 主编:刘波平
  • 地址:南昌市西湖区井冈山大道1416号8楼
  • 邮编:330003
  • 邮箱:jgsdd@163.com
  • 电话:0791-86490996
  • 国际标准刊号:ISSN:1006-2475
  • 国内统一刊号:ISSN:36-1137/TP
  • 邮发代号:44-121
  • 获奖情况:
  • 中国科技核心期刊 中国科技论文统计源期刊 江西省...
  • 国内外数据库收录:
  • 波兰哥白尼索引,中国中国科技核心期刊
  • 被引量:14808