针对现有和声搜索算法收敛速度慢、参数选择困难等不足,从搜索机制和算法融合两个方面进行了改进.首先利用轮盘赌选择和基于和声库历史信息的自动微调策略建立了一种轮盘赌自适应和声算法(roulette wheel selection and self-adaptive improved harmony search algorithm,RAHS),然后借鉴memetic策略,将RAHS算法作为全局搜索器,Powell法作为meme单元并引入混沌搜索进行扰动,融合建立了一种和声memetic算法(RAHS memetic algorithm,RAHMA).基于6个标准测试函数的仿真表明,RAHS算法优于三种典型的和声搜索算法,而RAHMA算法在搜索精度、收敛速度和鲁棒性等方面相对于RAHS算法又有了显著提高.
This paper proposes two improved harmony search algorithm for solving numerical optimization problems . To get start , a roulette and self-adaptive harmony search is proposed , in which a roulette random choosing mechanism and a pitch self adaptive adjusting strategy is introduced to overcome defects of slow convergent speed and parameter settings difficulties respectively in current harmony search algorithms .Then a more effective harmony search memetic algorithm fused the improved harmony search as a global search with Powell′s method as the meme unit is implemented .To jump out local optima ,chaos disturbance is also employed .Simulation with six benchmark functions shows that the two improved harmony search algorithms improve harmony search algorithm effectively .