A Legendre Galerkin spectral method for optimal control problems
- ISSN号:1009-6124
- 期刊名称:Journal of Systems Science and Complexity
- 时间:0
- 页码:663-671
- 分类:O232[理学—运筹学与控制论;理学—数学] TM15[电气工程—电工理论与新技术]
- 作者机构:[1]School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China., [2]The Faculty of Mathematics, Chengyi College, Jimei University, Xiamen 361021, China., [3]Hunan Key Laboratory for Computation and Simulation in Science and Engineering, School of Mathematicsand Computational Science, Xiangtan University, Xiangtan 411105, China.
- 相关基金:This work is supported by the Foundation for Talent Introduction of Guangdong Provincial University, Guang dong Province Universities and Colleges Pearl River Scholar Funded Scheme (2008), and the National Natural Science Foundation of China under Grant No. 10971074.
- 相关项目:最优控制问题自适应混合有限元方法
关键词:
最优控制问题, GALERKIN, LEGENDRE变换, 后验误差估计, 刚度矩阵, 离散方程, 数值实验, 谱逼近, Legendre-Galerkin, optimal control, spectral method.
中文摘要:
这份报纸认为 Legendre 是 Galerkin 光谱为非强迫的最佳的控制问题的近似。作者导出 posteriori 错误估计为光谱最佳的控制的近似计划问题。由选择适当基础功能, discretization 方程的生硬矩阵是稀少的。并且作者使用快 Legendre 变换改进这个方法的效率。表明我们的理论结果的二个数字实验被介绍。
英文摘要:
This paper considers the Legendre Galerkin spectral approximation for the unconstralnea optimal control problems. The authors derive a posteriori error estimate for the spectral approximation scheme of optimal control problem. By choosing the appropriate basis functions, the stiff matrix of the discretization equations is sparse. And the authors use the Fast Legendre Transform to improve the efficiency of this method. Two numerical experiments demonstrating our theoretical results are presented.