We study the stability properties of magnetized strange quark matter and strangelets under a strong magnetic field in the MIT bag model. The free energy per baryon of strange quark matter feels a great influence from the magnetic field. At the field strength about 1017 G, the magnetized strange quark matter becomes more stable.Considering the finite size effect, the magnetic influence on strangelets becomes complicated. For a given magnetic field, there exists a critical baryon number, below which the magnetized strangelets have lower energy than the nonmagnetized strangelets. For the field strength of 5 × 1017 G, the critical baryon number is Ac~ 100. Generally, the critical baryon number increases with the decreasing external magnetic field. When the field strength is smaller than1017 G, the critical baryon number goes up to Ac~ 105. The stable radius, electric charge, and quark flavor fractions of magnetized strangelets are shown.
We study the stability properties of magnetized strange quark matter and strangelets under a strong magnetic field in the MIT bag model. The free energy per baryon of strange quark matter feels a great influence from the magnetic field. At the field strength about 1017 G, the magnetized strange quark matter becomes more stable.Considering the finite size effect, the magnetic influence on strangelets becomes complicated. For a given magnetic field, there exists a critical baryon number, below which the magnetized strangelets have lower energy than the nonmagnetized strangelets. For the field strength of 5 × 1017 G, the critical baryon number is Ac~ 100. Generally, the critical baryon number increases with the decreasing external magnetic field. When the field strength is smaller than1017 G, the critical baryon number goes up to Ac~ 105. The stable radius, electric charge, and quark flavor fractions of magnetized strangelets are shown.