考虑在Banaeh空间非柱形域Ω上,微分系统 (IVP;τ,z0){z′=(x′,y′)=(f1(t,x,y) f2(t,x,y)=f(t,z),(t,z)∈Ω,z(τ)=(x(τ) y(τ))=z0=(x0 y0)解的局部存在性,其中f1,f2分别满足祭性条件与耗散性条件,得到的结果推广并完善了已有的相关结果。
The existence of solutions for the following differential system (IVP;τ,z0){z′=(x′,y′)=(f1(t,x,y) f2(t,x,y)=f(t,z),(t,z)∈Ω,z(τ)=(x(τ) y(τ))=z0=(x0 y0)in Banach space was investigated, where fl and f2 respectively meet noncompact condition and dissipative condition. The results extend and improve some known results.