位置:成果数据库 > 期刊 > 期刊详情页
基于自适应深度稀疏网络的在线跟踪算法
  • ISSN号:1009-5896
  • 期刊名称:《电子与信息学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:空军工程大学信息与导航学院,西安710077
  • 相关基金:国家自然科学基金(61473309); 陕西省自然科学基础研究计划项目(2015JM6269,2016JM6050)
中文摘要:

视觉跟踪中,高效鲁棒的特征表达是解决复杂环境下跟踪漂移问题的关键。该文针对深层网络预训练复杂费时及单网络跟踪易漂移的问题,在粒子滤波框架下,提出一种基于自适应深度稀疏网络的在线跟踪算法。该算法利用Re LU激活函数,针对不同类型目标构建了一种具有自适应选择性的深度稀疏网络结构,仅通过有限标签样本的在线训练,就可得到鲁棒的跟踪网络。实验数据表明:与当前主流的跟踪算法相比,该算法的平均跟踪成功率和精度均为最好,且与同样基于深度学习的DLT算法相比分别提高了20.64%和17.72%。在光照变化、相似背景等复杂环境下,该算法表现出了良好的鲁棒性,能够有效地解决跟踪漂移问题。

英文摘要:

In visual tracking, the efficient and robust feature representation is the key factor to solve the problem of tracking drift in complex environments. Therefore, to solve the problems of the complex and time-consuming of the pre-training process of deep neural network and the drift of the single network tracking, an online tracking method based on an adaptive deep sparse network is proposed under the tracking structure of particle filter. A deep sparse neural network architecture, which can be adaptively selected according to different types of targets, is constructed with the implementation of the Rectifier Linear Unit (ReLU) activation function. The robustness of deep tracking network can be easily achieved only through the online training of limited labeled samples. The results of experiments show that, compared with the state-of-the-art tracking algorithm, the average success ratio and precision of the proposed algorithm are both the highest, and they are raised by 20.64% and 17.72% respectively contrasted with the Deep Learning Tracker (DLT) algorithm based on deep learning. The proposed method can solve the problems of tracking drift efficiently, and shows better robustness, especially for the complex environment such as illumination changes, background clutter and so on.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《电子与信息学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院电子学研究所 国家自然科学基金委员会信息科学部
  • 主编:朱敏慧
  • 地址:北京市北四环西路19号
  • 邮编:100190
  • 邮箱:jeit@mail.ie.ac.cn
  • 电话:010-58887066
  • 国际标准刊号:ISSN:1009-5896
  • 国内统一刊号:ISSN:11-4494/TN
  • 邮发代号:2-179
  • 获奖情况:
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:24739