采用相空间直接观察法和行为复杂性算法,系统地分析了新型TD-ERCS离散混沌系统产生的伪随机序列的复杂性,得出了其复杂性变化规律.在Kolmogorov复杂性基础上,应用经典的Limpel-Ziv算法,ApEn算法和PE算法,从一维时间序列到多维相空间重构两方面计算了TD-ERCS离散混沌伪随机序列的复杂度大小.计算结果表明,TD-ERCS系统的行为复杂性高,而且该系统的复杂性大小随系统参数改变的变化范围小,是一个复杂性非常稳定的全域性离散混沌系统,其产生的混沌伪随机序列适合于信息加密或扩频通信.
By observing the phase diagram and using the behavior complexity algorithm, the complexity of chaotic pseudo-random sequences generated by the new TD-ERCS discrete chaotic system is analyzed in detail, and the rules of complexity variety are investigated. Based on the Kolmogorov complexity, from one-dimensional time series to multidimensional phase space restructure, the complexity values of TD-ERCS discrete chaotic pseudo-sequences are calculated by using the Limpel-Ziv algorithm, ApEn algorithm and PE algorithm, respectively. The results show that the behavior complexity of TD-ERCS system is high, and the complexity value changes a little with the change of the parameters of TD-ERCS system. TD-ERCS system is a discrete chaotic system with the steady complexity, and the pseudo-random sequences generated by TD-ERCS are suitable for use in information encryption and spread spectrum communications.