位置:成果数据库 > 期刊 > 期刊详情页
Microstructure and Mechanical Properties of AZ91D Magnesium Alloy Recycled from Scraps by Hot-press/extrusion
  • ISSN号:1003-6326
  • 期刊名称:《中国有色金属学报:英文版》
  • 时间:0
  • 分类:TG146.2[金属学及工艺—金属材料;一般工业技术—材料科学与工程;金属学及工艺—金属学]
  • 作者机构:[1] School of Materials Science and Engineering, Harbin University of Science and Technology, Harbin 150040, China, [2] National Engineering Research Center for Light Alloy Net Forming, Shanghai Jiao Tong University, Shanghai 200240, China
  • 相关基金:Sponsored by the National Natural Science Foundation of China (Grant No. 50974048), the Doctoral Fund of Ministry of Education of China (Grant No. 200802140004) , the Foundation of Heilongjiang Educational Committee (Grant No. 12531116), and the Harbin Special Funds for Creative Talents in Science and Technology (Grant No. 2013RFQXJI02).
中文摘要:

A large number of scraps are produced in the fabrication process of magnesium alloy products. It is necessary to recycle these scraps for the development and scale application of magnesium alloys. In this research,a method for recycling AZ91D magnesium alloy scraps fabricated by hot-press / extrusion was studied. Mechanical properties and microstructure of the recycled specimens were investigated. Microstructural analyses were performed by using the techniques of optical microscopy and scanning electron microscopy. Microstructural observations reveal that the recycled specimens consisted of fine grains when adopting the extrusion temperature of 400- 450 ℃,the extrusion ratio of( 25- 100) ∶ 1 and the extrusion rate of 0. 10- 0. 20 mm / s. Ultimate tensile strength and elongation to failure increased with the increase of the extrusion temperature,the extrusion ratio and the extrusion rate,respectively. Recycled specimens reached the highest ultimate tensile strength of average 361. 47 MPa and the highest elongation to failure of average 11. 55% when adopting the hot-press,the extrusion temperature of 400± 5 ℃,the extrusion ratio of 100 ∶ 1 and the extrusion rate of 0. 15 mm / s. The shape of bonding interface was tightly relation with the ultimate tensile strength. When the bonding interface formed continuous curves,the ultimate tensile strength decreased almost linearly with increasing the average width of the bonding interface. When the bonding interface formed discontinuous curves,the ultimate tensile strength increased almost linearly with the increase the proportion of the fine bonding length accounting for the measured interface length. Ultimate tensile strength of the recycled specimens could be calculated by using the forecastable equation.

英文摘要:

A large number of scraps are produced in the fabrication process of magnesium alloy products. It is necessary to recycle these scraps for the development and scale application of magnesium alloys. In this research, a method for recycling AZ91D magnesium alloy scraps fabricated by hot-press/extrusion was studied. Mechanical properties and microstructure of the recycled specimens were investigated. Microstructural analyses were performed by using the techniques of optical microscopy and scanning electron microscopy. Microstructural observations reveal that the recycled specimens consisted of fine grains when adopting the extrusion temperature of 400-450 ~C, the extrusion ratio of (25-100) : 1 and the extrusion rate of 0. 10-0. 20 mm/s. Ultimate tensile strength and elongation to failure increased with the increase of the extrusion temperature, the extrusion ratio and the extrusion rate, respectively. Recycled specimens reached the highest ultimate tensile strength of average 361.47 MPa and the highest elongation to failure of average 11.55% when adopting the hot-press, the extrusion temperature of 400_+5 ~C, the extrusion ratio of 100 : 1 and the extrusion rate of 0. 15 mm/s. The shape of bonding interface was tightly relation with the ultimate tensile strength. When the bonding interface formed continuous curves, the ultimate tensile strength decreased almost linearly with increasing the average width of the bonding interface. When the bonding interface formed discontinuous curves, the ultimate tensile strength increased almost linearly with the increase the proportion of the fine bonding length accounting for the measured interface length. Ultimate tensile strength of the recycled specimens could be calculated by using the forecastable equation.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国有色金属学报:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国有色金属学会
  • 主编:黄伯云
  • 地址:中国长沙中南大学
  • 邮编:410083
  • 邮箱:f-xsxb@csu.edu.cn
  • 电话:0731-88830949
  • 国际标准刊号:ISSN:1003-6326
  • 国内统一刊号:ISSN:43-1239/TG
  • 邮发代号:42-317
  • 获奖情况:
  • 国家“双百”期刊,第二届全国优秀科技期刊评比二等奖,中国有色金属工业总公司优秀科技期刊一等奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,美国科学引文索引(扩展库),英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊
  • 被引量:1159