位置:成果数据库 > 期刊 > 期刊详情页
点击欺诈群体检测与发现
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:TP309.2[自动化与计算机技术—计算机系统结构;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]南京工业大学计算机科学与技术学院,南京211816, [2]中国人民解放军73677部队,南京210016
  • 相关基金:国家自然科学基金资助项目(61203072); 国家公益性科研专项资助项目(201310162)
中文摘要:

针对目前存在大批网络用户,以群体形式来欺诈点击的问题,提出了一种检测点击欺诈群组的方法。首先使用频繁项集挖掘算法来发现共同点击过大量广告的个体用户,作为疑似欺诈组。然后,在对组内用户点击行为属性分析的基础上,运用孤立点检测方法找到与组内其他用户有显著差异的疑似欺诈用户。最后,运用贝叶斯分类方法对检测到的所有疑似欺诈成员分类,得到真正的欺诈群组和欺诈用户。在真实的数据集上进行的实验,验证了该方法的可行性和有效性。结果表明,该方法为点击欺诈检测问题提供了一条新的思路。

英文摘要:

This paper proposed a promising new method for detecting a fraudulent group. First,it used the frequent itemsets mining algorithm to reveal individual member with joint actions on advertisement click as a suspicious group. Next,based on properties analysis on click behavior of members of the suspicious group,it used outlier detection method to distinguish those whose behavior was significantly different with others,as suspicious targets. Finally,it detected the real fraud group and fraudulent users after applying Bayesian classifier on all the suspicious fraudulent users. Experimental results indicate the feasibility and validity of this method,which is based on real dataset. It gives a new approach to the detection of fraudulent clicks.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049