位置:成果数据库 > 期刊 > 期刊详情页
基于最小信息熵损的KLPP算法在化工监控中的应用
  • ISSN号:1001-4160
  • 期刊名称:《计算机与应用化学》
  • 时间:0
  • 分类:TQ015.9[化学工程] TP391.9[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]华南理工大学化学与化工学院,广东 广州 510640
  • 相关基金:国家自然科学基金项目(21176089,21376091),国家科技支撑计划课题(2012BAK13B02)
中文摘要:

针对化工过程的非线性以及过程的动态特征,本文开发出了一种基于最小信息熵损的核局部保留算法(MEL-KLPP)。算法优点:①能够有效提取过程中的信息,建立准确的统计模型②在降维过程中考虑了样本之间的关联信息,所得模型更加符合实际。将算法应用于润滑油重质过程以检验其故障检出能力,结果表明MEL-KLPP 算法的误报率和KLPP相近,低于KPCA,故障检出率(81.30%)高于KLPP(3.25%)和KPCA(69.7%)。将过程收集的数据根据工艺知识进行分块建模后,KLPP算法的故障检出率显著提高,MEL-KLPP检出率变化不大,表明KLPP算法对强噪声的复杂数据并不适用,MEL-KLPP算法对数据质量的要求不高,算法鲁棒性好,具有更广阔的应用前景。

英文摘要:

A new technique named Kernel Locality Preserving Projection based Minimum Entropy Loss (MET-KLPP) is developed to deal with the complex and nonlinear problem for chemical process monitoring,Kernel function and the minimum entropy loss was introduced to the The traditional methods named Locality Preserving Projection(LPP) at the same time. Comparing with other statistical process monitoring methods, MET-KLPP has two advantages in the process of dimension reduction .First, MET-KLPP method considers both the transition matrix eigenvalue and eigenvector, this can be more effective to reveal the essence of data feature and extract more effective information from the data .Second The relationship between samples are considered, so the model was developed using this method is more conform to the actual process. MET-KLPP was test using industry data from a lubricating replacement process to check its effectiveness,the lubricating including furfural refining process and ketone-benzol dewaxing process, the results are compared with other two methods Kernel Locality Preserving Projection (KLPP) and Kernel Principal Component Analysis (KPCA). Fault alarm rate of them is very similar with KLPP (4.31 %), MEL-KLPP (3.68%) and KPCA (6.40%). The fault detection of MET-KLPP is 81.30%, which is higher than KLPP (3.25%) and KPCA (69.7 %). In order to monitor the process and test the methods better the industry data was divided and modeling separately based on the technology knowledge , the fault detection rate of KLPP increased a lot, with 79.06 % for furfural refining process and 13.01 % for ketone-benzol dewaxing process, while MET-KLPP is almost the same with 81.30%for furfural refining process 6.10%for ketone-benzol dewaxing process, the fault detection rate of KPCA is not change two much but it is more lower than MET-KLPP, this means MET-KLPP have a good robustness and a wide application prospect.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机与应用化学》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学院
  • 主办单位:中国科学院过程工程研究所
  • 主编:王基铭
  • 地址:北京中关村北二街1号
  • 邮编:100080
  • 邮箱:jshx@home.ipe.ac.cn
  • 电话:010-62558482
  • 国际标准刊号:ISSN:1001-4160
  • 国内统一刊号:ISSN:11-3763/TP
  • 邮发代号:82-500
  • 获奖情况:
  • 1991年中国科学院优秀期刊三等奖,2000年中国科学院优秀期刊三等奖,1998年中国科技期刊影响因子工程类第二名,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2000版)
  • 被引量:9060