位置:成果数据库 > 期刊 > 期刊详情页
利用模糊分块改进协同过滤的扩展性和准确性
  • ISSN号:1007-5321
  • 期刊名称:《北京邮电大学学报》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:南京邮电大学信息网络技术研究所,南京210003
  • 相关基金:国家自然科学基金项目(61003237)
作者: 王晓军, 付超
中文摘要:

项目的协同过滤方法利用项目之间相似性预测用户对项目的评分,但相似项的选择面临可扩展性和准确性的问题.为此,提出分布式协同过滤方法,利用模糊分块技术将项目集分成若干块,然后仅在各块内比较项目的相似性.通过裁剪相似关系图进一步改善效率,从图中去除不可能相似的项目之间的边.最后,利用图的分区技术,将相似关系图分割为若干较小的区,在各分区上并行计算项目的相似度.实验结果表明,该方法能改善推荐系统的准确性和可扩展性.

英文摘要:

The ratings of items based on the similarities between items are predicted by traditional item- based collaborative filtering methods However, the selections of the similar ones are suffering from limited scalability and accuracy. A distributed collaborative filtering method was proposed. This method clusters items into several blocks using fuzzy blocking, and performs comparisons solely among the items within each block. Additional efficiency enhancements can be achieved through the pruning of the similar rela- tionship graph: edges between items that are not likely to be similar can be removed from the graph. It divides this graph into multiple smaller partitions from each which similarity degrees between items is cal- culated efficiently in parallel. Experiments show that the proposed method can improve the recommenda- tion scalability and accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《北京邮电大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:北京邮电大学
  • 主编:刘杰
  • 地址:北京海淀区西土城路10号195信箱
  • 邮编:100876
  • 邮箱:byxb@bupt.edu.cn
  • 电话:010-62281995 62282742
  • 国际标准刊号:ISSN:1007-5321
  • 国内统一刊号:ISSN:11-3570/TN
  • 邮发代号:2-648
  • 获奖情况:
  • 美国工程信息公司(Ei)数据库收录期刊,1999年全国优秀高等学校自然科学学报及教育部优秀...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:7684