位置:成果数据库 > 期刊 > 期刊详情页
一种基于散度差组合型文本特征降维方法
  • ISSN号:1000-7180
  • 期刊名称:《微电子学与计算机》
  • 时间:0
  • 分类:TP391[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]解放军理工大学理学院,江苏南京210007, [2]解放军理工大学指挥自动化学院,江苏南京210007
  • 相关基金:国家自然科学基金项目(70571087)
中文摘要:

讨论了文本分类中特征降维的主要方法及其特点,分析了基于散度差准则的特征降维的原理和方法,在避开求逆矩阵问题的同时,通过对文本特征进行选择对文本特征集进行了第一次压缩,借助于加权散度差原理对特征集进行了二次抽取,在最低限度减少信息损失的前提下实现了特征维数的大幅度降低。试验结果表明,这种方法在文本分类上的效率较好。

英文摘要:

The problem of feature dimension is one of the main problems in text classification. In the paper we bring forward a method of extracting the text features based on scatter difference and CHI statistics. Firstly, we analyse the primary feature reduction means and their characteristic in the text classification. Secondly, we analyse the principle and method of scatter difference criterion. Avoid calculating the inverse matrix, we realize the first feature reduction by using feature selection. Then we use a weighted-scatter difference to extract the spare features. At the precondition of lower information loss we reduce the feature dimension. Lastly, our test about text categorization shows that this method has a better precision.

同期刊论文项目
期刊论文 77 会议论文 10 获奖 2 著作 1
同项目期刊论文
期刊信息
  • 《微电子学与计算机》
  • 中国科技核心期刊
  • 主管单位:中国航天科技集团公司
  • 主办单位:中国航天科技集团公司第九研究院第七七一研究所
  • 主编:李新龙
  • 地址:西安市雁塔区太白南路198号
  • 邮编:710065
  • 邮箱:mc771@163.com
  • 电话:029-82262687
  • 国际标准刊号:ISSN:1000-7180
  • 国内统一刊号:ISSN:61-1123/TN
  • 邮发代号:52-16
  • 获奖情况:
  • 航天优秀期刊,陕西省优秀期刊一等奖
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:17909