提出了由顶点转角和相邻边长比例构成的多边形伸缩内在量表示的方法,多扛形从整体上由一个伸缩内在矩阵来表示,该表示方法具有平移、旋转和伸缩等几何不变性.将伸缩内在量表示方法应用于多边形编辑,从整体上优化调整邻边的长度比例和有向转角,将多边形编辑问题转化为一个稀疏线性方程组的求解.实例比较表明,该算法能在形状编辑时尽量保持形状的几何细节,优于现有的多种多边形编辑算法。
We study a polygon representation composed by the vertex angles and ratios of adjacent edge lengths, which is invariant to geometric transformations such as translation, rotation and scaling. The polygon is globally represented by a scale-invariant intrinsic matrix. Applying the representation in shape editing, our algorithm can optimally keeps the vertex angles and ratios of adjacent edge lengths in a global way, thus the editing results will preserve the intrinsic geometry details globally and perceptually. Experiments show that our approach produces more satisfactory results than many of the existed methods.