G是一个非空图,如果存在一个双值函数f:E(G)→{1,-1},使得对任意e∈E(G)均有∑e'∈NG[e] f(e')≥1成立,则称,为图G的一个符号边控制函数,其中NG[e]t=NC(e)U{e}为e的闭边邻域。图G的符号边控制数定义为:γ's(G)=min{∑e∈E(G)f(e)|f为图G的一个符号边控制函数}。确定任意给定图的符号边控制数是相当困难的,因而计算某些特殊图的符号边控制数是有价值的,在此给出了卡方积C3×Cn(n≥3)的符号边控制数。
Let G be a nonempty graph. If an edgef:E(G)→{1,-1} ,then ∑e'∈NG[e] f(e')≥1 for all signed domination function of G is a two-valued function e∈E(G) ,where NG[e]t=NC(e)U{e} is the closed edge neighborhood of the edge e. The edge signed domination number of G is γ's(G)=min{∑e∈E(G)f(e)|f edge signed domination function of G}. Since it is very hard to determine the signed edge domination number for any arbitrary graph ,it's valuable to determine the parameter for some special graphs. Thus, the signed edge domination numbers for cartesian products C3×Cn(n≥3) is given in this paper.