位置:成果数据库 > 期刊 > 期刊详情页
复杂采空区激光多点探测及点云拼接与精简
  • ISSN号:2095-9389
  • 期刊名称:《工程科学学报》
  • 时间:0
  • 分类:TD76[矿业工程—矿井通风与安全]
  • 作者机构:[1]中南大学资源与安全工程学院,长沙410083
  • 相关基金:“十二五”国家科技支撑计划资助项目(2012BAK09B02-05);国家自然科学基金资助项目(51274250)
中文摘要:

针对复杂采空区激光探测中存在探测“盲区”和点云数据分布不均的问题,研究激光多点扫描和点云数据拼接与精简方法.通过多点探测避免了单次探测“盲区”,加密了数据稀疏区.提出了基于公共坐标和最小二乘法的靶标矩阵转换方法,实现了多点探测点云的拼接.统计了点云密集区的分布规律;对密集散乱点云,提出了沿 y 轴方向分层剖分,层内数据以 x和 z 坐标极值分区,区内每点以 x 值排序后依步长筛选的精简算法.大型贯通采空区验证表明:基于最小二乘法的拼接算法最优,误差范围在0.1 mm 左右;数据精简率为15%-25%,确保了边界三维信息的完整性.

英文摘要:

In view of the problems of ‘blind spots’ in complicated goaf detecting by using laser scanning and point cloud density distribution inhomogeneity, this article introduced multi-point laser scan and point cloud merging and compression. Multi-point scan in complicated goaf avoided ‘blind spots’ and densified sparse point cloud regions. The merging algorithm of point cloud data was put forward based on a common coordinate system and the least-squares principle to solve the target transformation matrix. After the distri-bution rule of point cloud concentration areas was analyzed, the scattered point cloud compression algorithm was proposed, in which the point cloud was divided into portions along the y direction firstly, then intralayer data were divided by the extreme values of x and z, and each point was sorted on the x value and screened on step δ. Error analysis of an instance of large versed goaf shows that the merging algorithm based on the least-squares principle will achieve high precision with an error range of about 0. 1 mm. The compres-sion algorithm can achieve a compression proportion of 15% to 25% and ensure the integrity of 3D boundary information at the same time.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《工程科学学报》
  • 北大核心期刊(2011版)
  • 主管单位:中华人民共和国教育部
  • 主办单位:北京科技大学
  • 主编:张欣欣
  • 地址:北京市海淀区学院路30号
  • 邮编:100083
  • 邮箱:xuebaozr@ustb.edu.cn
  • 电话:010-62332875
  • 国际标准刊号:ISSN:2095-9389
  • 国内统一刊号:ISSN:10-1297/TF
  • 邮发代号:82-303
  • 获奖情况:
  • 首届国家期刊奖,第二届全国优秀科技期刊评比一等奖,全国高等学校自然科学学报系统优秀学报评比一等奖,中国期刊方阵“双高”期刊
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:392