位置:成果数据库 > 期刊 > 期刊详情页
引入极线约束的SURF特征匹配算法
  • ISSN号:1006-8961
  • 期刊名称:《中国图象图形学报》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:南京邮电大学材料科学与工程学院,南京210023
  • 相关基金:国家自然科学基金项目(61474064);南京邮电大学基金项目(NY212076,NY212050)
中文摘要:

目的特征点匹配算法是当今计算机图像处理领域的研究热点,但是大多数现存的方法不能同时获得数量多和质量优的匹配。鉴于此,基于SURF(speeded—uprobustfeatures)算法,通过引入极线约束来提高特征匹配效果。方法首先使用SURF算法检测和描述图像特征点,然后使用RANSAC(randomsamplingconsensus)方法计算匹配图像之间的基础矩阵,通过该基础矩阵计算所有特征点的极线。再引入极线约束过滤掉错误匹配,最终获得数量与质量显著提高的匹配集合。结果实验结果表明,该方法获得的匹配具有高准确度,匹配数目与原约束条件相比可高达2~8倍。结论本文方法实现过程简单,不仅匹配准确度高且能够大大提高正确的特征匹配数,适用于处理不同类型的图像数据。

英文摘要:

Objective Feature matching is one of the most important research topics in the field of image processing. How- ever, most available methods fail to achieve satisfying quantitative and qualitative matches simultaneously. In this study, we introduced epipolar constraint into speeded-up robust features (SURF) feature matching, thereby achieving significant improvement. Method In this method, the SURF algorithm was adopted to detect the feature points of each studied image. Then, the fundamental matrix was calculated using random sample consensus (RANSAC) and was used to obtain the epi- polars of all the points. Finally, a constraint was introduced into the epipolars to filter error matches. Consequently, signifi- cantly improved matches with enhanced quantity and quality were achieved. Result The experimental results indicate that compared with the old method, our method cannot only obtain matches with high accuracy but can further achieve an in- crease of twofold to eightfold in quantity. Conclusion The process and implementation of the proposed method are simple and accurate. Moreover, the method can increase the number of correct matches and handle different types of images.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《数码影像》
  • 主管单位:
  • 主办单位:中国图象图形学学会 中科院遥感所 北京应用物理与计算数学研究所
  • 主编:
  • 地址:北京市海淀区花园路6号
  • 邮编:100088
  • 邮箱:
  • 电话:010-86211360 62378784
  • 国际标准刊号:ISSN:1006-8961
  • 国内统一刊号:ISSN:11-3758/TB
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 被引量:0