线程水平推测为线级的并行利用提供不仅一个简单平行编程模型,而且有效机制。思索的平行建模的软件的性能被环的不同类型引起的高全球的开销限制。这些环通常有相关性的不同特征和优化策略的不同要求。在这份报纸,我们建议三种全面优化技术减少全球开销的不同因素,瞄准从环的不同类型的要求。内部线的取能与经常的相关性减少环的高 mis 推测率,打乱次序的承诺能与很少发生的相关性减少环的控制开销,当缩放的提高的动态任务颗粒度能减少控制开销并且与改变相关性的特征优化环的全球开销时。所有这三种优化技术在 HEUSPEC 被实现了,一个软件 TLS 系统。试验性的结果显示他们能从基准的不同的组满足要求。这些技术的联合能改进所有基准的表演并且到达更高平均的加速。
Thread level speculation provides not only a simple parallel programming model, but also an effective mech- anism for thread-level parallelism exploitation. The performance of software speculative parallel models is limited by high global overheads caused by different types of loops. These loops usually have different characteristics of dependencies and different requirements of optimization strategies. In this paper, we propose three comprehensive optimization techniques to reduce different factors of global overheads, aiming at requirements from different types of loops. Inter-thread fetching can reduce the high mis-speculation rate of the loops with frequent dependencies and out-of-order committing can reduce the control overhead of the loops with infrequent dependencies, while enhanced dynamic task granularity resizing can reduce the control overhead and optimize the global overhead of the loops with changing characteristics of dependencies. All these three optimization techniques have been implemented in HEUSPEC~ a software TLS system. Experimental results indicate that they can satisfy tile demands from different groups of benchmarks. The combination of these techniques can improve the performance of all benchmarks and reach a higher average speedup.