位置:成果数据库 > 期刊 > 期刊详情页
基于分数阶共变的有色谐波信号频谱估计
  • 期刊名称:通信技术
  • 时间:0
  • 页码:46-49
  • 语言:中文
  • 分类:TN911.7[电子电信—通信与信息系统;电子电信—信息与通信工程]
  • 作者机构:[1]九江学院电子工程学院,江西九江332005
  • 相关基金:国家自然科学基金(NO.60772037);江西省卫生厅科技计划项目(No.20072048).
  • 相关项目:分数低阶非高斯有色噪声的谱分析及频域相关应用研究
中文摘要:

在alpha稳定分布噪声下,传统的谐波信号的频谱估计方法会失去其韧性。本文简要分析了分数阶共变矩阵的结构,在此基础上提出了基于分数阶统计量的谐波信号的频谱估计新方法:基于分数阶共变的Pisarenko谐波分解(FOC—PHD)算法和多信号分类法(FOC-MUSIC)算法。这种方法将信号频谱估计的范围从二阶矩扩大到P阶矩(1〈p〈α≤2)。通过对给定的alpha稳定分布噪声中正弦信号的估计与分辨进行仿真,详细比较了传统的谐波信号频谱估计和FOC-PHD、FOC-MUSIC频谱估计算法的性能,仿真结果表明,本文提出的方法明显优于传统的频谱估计算法,具有良好的韧性。

英文摘要:

Under the alpha stable distribution noise , the convential harmonic signal spectrum estimate algorithm would lose its capability. This paper briefly analyzes the frame of fractional order covariation, proposes some new methods for frequency estimation under alpha-stable noise conditions: Fractional Order Covariation Pisarenko harmonic decomposition (FOC-PHD) and Fractional Order Covariation Multiple Signal Classification (FOC-MUSIC). This method extends the range from 2 to p (l〈p〈a~_2). By estimating the sinusoidal signals embedded in the a stable noise, the convential harmonic signal spectrum estimate algorithm and FOC-PHD, FOC-MUSIC algorithm are compared in detail. Simulation results show that the new methods are robust, and their resolution capability and probability of resolution are better than conventional algorithm.

同期刊论文项目
同项目期刊论文