为了检测工作人员的烦躁情绪,实现情感状态的评价,通过在工作环境中诱发情感语音,获取了足够的测试样本,建立了2000条样本的工作环境情感语音数据库.在检测烦躁情绪过程中,首先提取语音的韵律特征和音质特征参数,然后利用基于蛙跳算法的改进的BP神经网络进行烦躁情绪识别.实验比较了BP,RBF和sFLA神经网络的性能,结果显示SFLA神经网络的识别率比BP神经网络高4.7%,比RBF神经网络高4.3%.实验结果表明,使用蛙跳算法训练随机初始数据可以优化神经网络的连接权重和阈值,加快收敛速度,提高识别率.
In order to recognize people's annoyance emotions in the working environment and evaluate emotional well- being, emotional speech in a work environment is induced to obtain adequate samples of emotional speech, and a Mandarin database with two thousands samples is built. In searching for annoyance-type emotion features, the prosodic feature and the voice quality feature parameters of the emotional statements are extracted first. Then an improved back propagation (BP) neural network based on the shuffled frog leaping algorithm (SFLA) is proposed to recognize the emotion. The recognition capability of the BP, radical basis function (RBF) and the SFLA neural networks are compared experimentally. The results show that the recognition ratio of the SFLA neural network is 4. 7% better than that of the BP neural network and 4. 3% better than that of the RBF neural network. The experimental results demonstrate that the random initial data trained by the SFLA can optimize the connection weights and thresholds of the neural network, speed up the convergence and improve the recognition rate.