形式的参数鉴定为水力的结构是处于监视的健康和损坏察觉的一个核心问题。在周围的刺激下面与一个灯泡为一个房顶溢出水力发出的电力驻扎管状的单位,联合颤动系统的复杂 unit-powerhouse-dam 增加形式的参数鉴定的困难。在这研究,鉴于形式的顺序的困难,堵塞的决心和噪音由周围的刺激引起了,与假模式鉴定和消除问题一起,整体实验模式分解( EEMD )方法习惯于减少噪音,单个熵增长光谱被用来决定系统顺序,并且多重标准被用来消除假模式。eigensystem 实现算法(时代) 和方法当时是的随机的 subspace 鉴定(SSI ) 过去常识别形式的参数。结果证明在开始的四个模式的频率的相对错误为 ERA 方法在 10% 以内,当 SSI 的那些在第二和第三个模式是超过 10% 时。因此, ERA 方法为为这个特别发电站布局识别结构的形式的参数是更适当的。
Modal parameter identification is a core issue in health monitoring and damage detection for hydraulic structures. For a roof overflow hydropower station with a bulb tubular unit under ambient excitation, a complex unit-powerhouse-dam coupling vibration system increases the difficulties of modal parameter identification. In this study, in view of the difficulties of modal order determination and the noise jamming caused by ambient excitation, along with false mode identification and elimination problems, the ensemble empirical mode decomposition (EEMD) method was used to decrease noise, the singular entropy increment spectrum was used to determine system order, and multiple criteria were used to eliminate false modes. The eigensystem realization algorithm (ERA) and stochastic subspace identification (SSI) method were then used to identify modal parameters. The results show that the relative errors of frequencies in the first four modes were within 10% for the ERA method, while those of SSI were over 10% in the second and third modes. Therefore, the ERA method is more appropriate for identifying the structural modal parameters for this particular powerhouse layout.