位置:成果数据库 > 期刊 > 期刊详情页
Dynamic Multi-objective Optimization of Chemical Processes Using Modified Bare- Bones MOPSO Algorithm
  • ISSN号:1000-0054
  • 期刊名称:《清华大学学报:自然科学版》
  • 时间:0
  • 分类:TQ021.8[化学工程]
  • 作者机构:[1]Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
  • 相关基金:National Natural Science Foundations of China (Nos. 61222303, 21276078) ; National High-Tech Research and Development Program of China ( No. 2012AA040307) ; New Century Excellent Researcher Award Program from Ministry of Education of China ( No. NCET- 10-0885) ; the Fundamental Research Funds for the Central Universities and Shanghai Leading Academic Discipline Project, China (No. B504)
中文摘要:

Dynamic multi-objective optimization is a complex and difficult research topic of process systems engineering. In this paper,a modified multi-objective bare-bones particle swarm optimization( MOBBPSO) algorithm is proposed that takes advantage of a few parameters of bare-bones algorithm. To avoid premature convergence,Gaussian mutation is introduced; and an adaptive sampling distribution strategy is also used to improve the exploratory capability. Moreover, a circular crowded sorting approach is adopted to improve the uniformity of the population distribution.Finally, by combining the algorithm with control vector parameterization,an approach is proposed to solve the dynamic optimization problems of chemical processes. It is proved that the new algorithm performs better compared with other classic multiobjective optimization algorithms through the results of solving three dynamic optimization problems.

英文摘要:

Dynamic multi-objective optimization is a complex and dimcult research topic of process systems engineering. In this paper. a modified multi-objective bare-bones particle swarm optimization ( MOBBPSO) algorithm is proposed tbat takes advantage of a few parameters of bare-bones algorithm. To avoid premature convergence. Gaussian mutation is introduced; and an adaptive sampling distribution strategy is also used to improve the exploratory capability. Moreover. a circular crowded sorting approach is adopted to improve the uniformity of the population distribution. Finally. by combining the algorithm with control vector parameterization. an approach is proposed to solve the dynamic optimization problems of chemical processes. It is proved that the new algorithm performs better compared with other classic multiobjective optimization algorithms through the results of solving three dynamic optimization problems.

同期刊论文项目
期刊论文 131 会议论文 8 获奖 1
同项目期刊论文
期刊信息
  • 《清华大学学报:自然科学版》
  • 中国科技核心期刊
  • 主管单位:教育部
  • 主办单位:清华大学
  • 主编:梁恩忠
  • 地址:北京市海淀区清华大学学研大厦B座908
  • 邮编:100084
  • 邮箱:xuebaost@tsinghua.edn.cn
  • 电话:010-62788108 62792976
  • 国际标准刊号:ISSN:1000-0054
  • 国内统一刊号:ISSN:11-2223/N
  • 邮发代号:2-90
  • 获奖情况:
  • 国家期刊奖,国家“双高”期刊,1992年以来,历次国家级和省部级一等奖,第一、二届全国优秀科技期刊一等奖,教育部优秀期...,第三届中国出版政府奖提名奖
  • 国内外数据库收录:
  • 美国化学文摘(网络版),美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,美国应用力学评论,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:43470