在我们的实验,一个单个铯原子在 large-magnetic-gradient 准备了磁电机光的陷井(警句) 能高效地被变成 1064-nm far-off-resonance 显微镜的光偶极子陷井(堡垒) 。在二个陷井之间的单个原子的有效转移被用来在堡垒决定套住的一生和单个原子的有效温度。典型套住一生被减少从 6.9 s 改进了到 130 s 背景压力从加的 1 “> 3 F <啜class=” a-plus-plus “> 4 作为规模, 5d6p 的漏率<啜class=“ a-plus-plus ”> 3 F <潜水艇class=“ a-plus-plus ”> 4 -5d 2 3 F 被用来评估转变可能性。有不同持续时间的 706 nm 激光脉搏被用于钡为 6s5d 的原子横梁<啜class=“ a-plus-plus ”> 3 D <潜水艇class=“ a-plus-plus ”> 3 -5d 2 3 F <潜水艇class=“ a-plus-plus “> 4 光抽,并且在 6s5d 的留下的百分比<啜class=” a-plus-plus “> 3 D <潜水艇class=” a-plus-plus “> 3 被测量。在 expone 以后??
In our experiment, a single cesium atom prepared in a large-magnetic-gradient magneto optical trap (MOT) can be efficiently transferred into a 1064-nm far-off-resonance microscopic optical dipole trap (FORT). The efficient transfer of the single atom between the two traps is used to determine the trapping lifetime and the effective temperature of the single atom in FORT. The typical trapping lifetime has been improved from ~ 6.9 s to ~ 130 s by decreasing the background pressure from 1 × 10^-10 Torr to ~ 2 × 10^-11 Torr and applying one-shot 10-ms laser cooling phase. We also theoretically investigate the dependence of trapping lifetimes of a single atom in a FORT on trap parameters based on the FORT beam's intensity noise induced heating. Numerical simulations show that the heating depends on the FORT beam's waist size and the trap depth. The trapping time can be predicted based on effective temperature measurement of a single atom in the FORT and the intensity noise spectra of the FORT beam. These experimental results are found to be in agreement with the predictions of the heating model.