与 landfalling 台风 Kaemi (2006 ) 联系的详细表面降雨过程被调查基于时时从二维的解决云的模型模拟的数据。模型是综合的有从环境预言(NCEP )/ 的国家中心的强加的大规模垂直速度,带的风,水平温度和蒸汽移流的 6 天全球数据吸收系统(GDAS ) 数据。模拟数据以表面雨率与观察被验证。处于在模拟和计量器观察之间的表面雨率的 Root-Mean-Squared (RMS ) 差别是 0.660 公里 h-1,它比模仿的雨率(0.753 公里 h-1 ) 和观察的雨率(0.833 公里 h-1 ) 的标准差小。模拟数据然后被用来学习与详细表面降雨过程联系在期间的物理原因乍见陆地。时间平均的结果表演和模型域平均数 P 主要来自大规模集中(QWVF ) 和本地蒸汽损失(积极 QWVF ) 。如果 QWVT 和 QCM (云来源 / 水池) 没被看作贡献者到 P, P 的大低估(大约 15%) 将发生。QWVF 在大多数集成时间期间说明 P 的变化,当它不总是是到 P 的一个贡献者时。当分叉与本地蒸汽损失是主导的是到 P 的一个贡献者时,有时,表面降雨能发生。表面降雨是 multi-timescale 相互作用的结果。QWVF 与时间拥有最长的时间规模和变化的最低频率并且可以在更长的时间规模上在 P 上施加影响。QWVF 拥有第二最长的时间规模和最低频率和罐头解释大多数 P 的变化。QWVT 和 QCM 拥有更短的时间规模和更高的频率,它能在 P 解释更多的详细变化。划分分析证明层状的降雨从 7 月 26 日的早上是主导的到 7 月 27 日的迟了的夜里为止。在那以后,对流降雨统治到大约 1000 LST 28 7 月为止。在 7 月 28 日前,当在那以后他们很作出贡献时,在没有降雨的区域的 QWVT 的变化少些作出贡献到域平均数 QWVT 的,它对在他们的部分范围的相应变化一致。在降雨区域的 QWVF 的变化是主要贡献者到域平均数 QWVF,然后,到表面雨的主要贡献者在 7 月 28 日的下午前评价?
The detailed surface rainfall processes associated with landfalling typhoon Kaemi(2006) are investigated based on hourly data from a two-dimensional cloud-resolving model simulation. The model is integrated for 6 days with imposed large-scale vertical velocity, zonal wind, horizontal temperature and vapor advection from National Center for Environmental Prediction (NCEP) / Global Data Assimilation System (GDAS) data. The simulation data are validated with observations in terms of surface rain rate. The Root-Mean-Squared (RMS) difference in surface rain rate between the simulation and the gauge observations is 0.660 mm h^-1, which is smaller than the standard deviations of both the simulated rain rate (0.753 mm h^-1) and the observed rain rate (0.833 mm h^-1). The simulation data are then used to study the physical causes associated with the detailed surface rainfall processes during the landfall. The results show that time averaged and model domain-mean Ps mainly comes from large-scale convergence (QWVF) and local vapor loss (positive QWVT). Large underestimation (about 15%) of Ps will occur if QWVT and QCM (cloud source/sink) are not considered as contributors to Ps ,QWVF accounts for the variation of P during most of the integration time, while it is not always a contributor to Ps,Sometimes surface rainfall could occur when divergence is dominant with local vapor loss to be a contributor to Ps - Surface rainfall is a result ofmulti-timescale interactions. QWVE possesses the longest time scale and the lowest frequeney the second and QCM of variation with time and may exert impact on P on longer time scales. QWVF possesses longest time scale and lowest frequency and can explain most of the variation of Ps. QWVT possess shorter time scales and higher frequencies, which can explain more detailed variations in Ps. Partitioning analysis shows that stratiform rainfall is dominant from the morning of 26 July till the late night of 27 July. After that, convective rainfall dominate