该文从1+1维的孤子方程出发,构造出一个2+1维在Lax意义下可积的方程.接着这个2+1维可积方程被分解为可解的常微分方程.随后引入超椭圆Riemann曲面和Abel-Jacobi坐标把流进行了拉直.再利用Riemannθ函数给出了这个2+1维方程的代数几何解.
In this paper, a (2+1)-dimensional integrable equation is presented with the help of (1+1)-dimensional soliton equations. The (2+1)-dimensional integrable equation is decomposed into solvable ordinary differential equations. A hyperelliptic Riemann surface and Abel-Jacobi coordinates are introduced to strainghten the associated flow, from which the algebro-geometric solutions of the (2+1)-dimensional integrable equation are constructed by means of the Riemann theta functions.