位置:成果数据库 > 期刊 > 期刊详情页
基于神经网络逆系统的无轴承异步电机非线性内模控制
  • ISSN号:0254-4156
  • 期刊名称:自动化学报
  • 时间:2013.4.15
  • 页码:433-439
  • 分类:TP[自动化与计算机技术]
  • 作者机构:[1]南京工程学院电力工程学院,南京211167, [2]江苏大学电气信息工程学院,镇江212013
  • 相关基金:国家自然科学基金(61174055); 南京工程学院校级科研基金(YKJ201217)资助~~
  • 相关项目:数控机床高速磁悬浮电主轴自适应逆解耦控制及数字化技术
中文摘要:

针对无轴承异步电机非线性、多变量、强耦合的特点,提出一种基于神经网络α阶逆系统方法的非线性内模控制策略.将用动态神经网络逼近的无轴承异步电机α阶逆模型与原系统复合,将非线性的无轴承异步电机原系统解耦成转子径向位移、转速和转子磁链四个独立的伪线性子系统.为了保证系统的鲁棒性,对伪线性系统引入内模控制,仿真和实验研究验证了所提控制方法的有效性.

英文摘要:

The bearingless induction motor is a nonlinear, multi-variable and strongly coupled system. For this system, a novel internal model control strategy based on neural network αth-order inverse system theory is proposed in this paper to realize the decoupling control. By cascading the αth-order inverse model approximated by the dynamic neural network with the original system, the nonlinear bearingless induction motor system is decoupled into four independent pseudo-linear subsystems, that is, two radial displacement subsystems, a speed subsystem and a rotor flux subsystem. Then, the internal model control method is introduced to the four pseudo-linear subsystems to ensure the robustness and antijamming ability of the closed-loop system. The effectiveness and superiority of the proposed strategy are demonstrated by simulation and experiment.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《自动化学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国自动化学会 中国科学院自动化研究所
  • 主编:王飞跃
  • 地址:北京东黄城根北街16号
  • 邮编:100717
  • 邮箱:aas@ia.ac.cn
  • 电话:010-64019820
  • 国际标准刊号:ISSN:0254-4156
  • 国内统一刊号:ISSN:11-2109/TP
  • 邮发代号:2-180
  • 获奖情况:
  • 1997年获全国优秀期刊奖,1985、1990、1996、2000年获中国科学院优秀期刊二等奖,2002年获国家期刊奖
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:27550