研究了压缩塑性变形对纳米多孔金电化学驱动性能的影响.结果表明,虽然压缩变形会导致材料孔隙率和比表面积降低,但随着变形量的增大,在压缩方向上其驱动幅度呈先升高再降低的趋势.单位体积和单位质量材料的驱动能量密度也随着变形量的增大而大幅度提高.压缩变形样品驱动性能的提高是由于压缩过程中纳米多孔结构的空间形貌和分布发生变化.对压缩变形过程中纳米多孔结构演变进行定量表征,是理解驱动性能提高根本原因的关键.
The electrochemical actuation performance of nanoporous gold samples deformed by compression was investigated. Although the porosity and specific surface area decrease with increasing compression strain, the strain amplitude of actuation which were measured along the compression direction, increases and then decreases with increasing compression strain. The compression also greatly increases the strain energy density of nanoporous gold actuator. The improvement of actuation performance is attributed to the morphology change of nanoporous structure during compression. The understanding of the underlying mechanism requires quantitative characteriza- tion of morphology and morphological evolution of nanoporous structure during compression.