位置:成果数据库 > 期刊 > 期刊详情页
Decoupled estimation of frequency-dependent IQI and channel for OFDM systems with direct-conversion transceivers
  • ISSN号:1004-4132
  • 期刊名称:《系统工程与电子技术:英文版》
  • 时间:0
  • 分类:N945[自然科学总论—系统科学]
  • 作者机构:[1]College of Telecommunications and Information Engineering, Nanjing University of Posts and Telecommunications,Nanjing 210003, China
  • 相关基金:This work was supported by the National Natural Science Foundationof China (61401232; 61471200; 61501248; 61501254), the China PostdoctoralScience Foundation (2014M561692), the Jiangsu Province PostdoctoralScience Foundation (1402087C) and the NUPTSF (NY213063).
中文摘要:

The in-phase and quadrature-phase imbalance (IQI)is one of the major radio frequency impairments existing in orthogonal frequency division multiplexing (OFDM) systems with direct-conversion transceivers. During the transmission of the communication signal, the impact of IQI is coupled with channel impulse responses (CIR), which makes the traditional channel estimation schemes ineffective. A decoupled estimation scheme is proposed to separately estimate the frequency-dependent IQI and wireless channel. Firstly, the generalized channel model is built to separate the parameters of IQI and wireless channel. Then an iterative estimation scheme of frequency-dependent IQI is designed at the initial stage of communication. Finally, based on the estimation result of IQI, the least square algorithm is utilized to estimate the channel-related parameters at each time of channel variation.Compared with the joint estimation schemes of IQI and channel,the proposed decoupled estimation scheme requires much lower training overhead at each time of channel variation. Simulation results demonstrate the good estimation performance of the proposed scheme.

英文摘要:

The in-phase and quadrature-phase imbalance (IQI) is one of the major radio frequency impairments existing in orthogonal frequency division multiplexing (OFDM) systems with direct-conversion transceivers. During the transmission of the communication signal, the impact of IQI is coupled with channel impulse responses (CIR), which makes the traditional channel estimation schemes ineffective. A decoupled estimation scheme is proposed to separately estimate the frequency-dependent IQI and wireless channel. Firstly, the generalized channel model is built to separate the parameters of IQI and wireless channel. Then an iterative estimation scheme of frequency-dependent IQI is designed at the initial stage of communication. Finally, based on the estimation result of IQI, the least square algorithm is utilized to estimate the channel-related parameters at each time of channel variation. Compared with the joint estimation schemes of IQI and channel, the proposed decoupled estimation scheme requires much lower training overhead at each time of channel variation. Simulation results demonstrate the good estimation performance of the proposed scheme.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《系统工程与电子技术:英文版》
  • 主管单位:中国航天机电集团
  • 主办单位:中国航天工业总公司二院
  • 主编:高淑霞
  • 地址:北京海淀区永定路52号
  • 邮编:100854
  • 邮箱:jseeoffice@126.com
  • 电话:010-68388406 68386014
  • 国际标准刊号:ISSN:1004-4132
  • 国内统一刊号:ISSN:11-3018/N
  • 邮发代号:82-270
  • 获奖情况:
  • 航天系统优秀期刊奖,美国工程索引(EI)和英国科学文摘(SA)收录
  • 国内外数据库收录:
  • 荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,美国科学引文索引(扩展库),英国科学文摘数据库
  • 被引量:242