位置:成果数据库 > 期刊 > 期刊详情页
基于BP神经网络的马铃薯遥感识别图像数据分析研究
  • ISSN号:1674-1544
  • 期刊名称:《中国科技资源导刊》
  • 时间:0
  • 分类:P237[天文地球—摄影测量与遥感;天文地球—测绘科学与技术]
  • 作者机构:[1]中国农业科学院农业资源与农业区划研究所,北京100081
  • 相关基金:科技基础性工作专项项目“科技基础性工作数据资料集成与规范化整编”(2013FY110900);国家国际科技合作专项项目“天空地一体化精准农业物联网平台联合研发”(2014DFE10220).
中文摘要:

运用遥感手段精确监测马铃薯种植面积是稳固马铃薯主粮化政策、维护国家粮食安全的必要保障。本文以吉林省长春市九台区纪家镇、兴隆镇为研究区,选用landsat8OLI遥感数据,借助ENVI平台构建了基于BP神经网络的土地覆盖分类模型,应用于研究区的马铃薯等作物分类研究。以landsat8OLI7个彩色波段作为输入,不断调节分类参数,最终确定了最优分类网络结构。结果显示,BP神经网络法马铃薯的分类生产者精度为94.22%。研究表明,BP神经网络分类方法是一种手段灵活、结果较准确的马铃薯遥感识别方法。

英文摘要:

The efficient and accurate remote sensing means of potato acreage monitoring is vital to stabilize potato production as a staple food and maintain the necessary guarantee for national food security.In this paper,a land cover classification model based on BP neural network was constructed to detect potato and other crops in the area of Jijia Town and Xinglong Town,locating in Jiutai District,Changchun City,Jilin Province.Taking the seven color bands of landsat8OLI as input,the classification parameters are adjusted continuously,and the optimal classification network structure is finally determined.The results showed that the producer accuracy of potato was94.22%.The research shows that BP neural network classification method is a kind of potato remote sensing identification method with flexible measure and accurate classification result.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《中国科技资源导刊》
  • 中国科技核心期刊
  • 主管单位:中华人民共和国科学技术部
  • 主办单位:中国科学技术信息研究所
  • 主编:彭洁
  • 地址:北京三里河路54号
  • 邮编:100045
  • 邮箱:zgkjzydk@istic.ac.cn
  • 电话:010-68514086 68571416
  • 国际标准刊号:ISSN:1674-1544
  • 国内统一刊号:ISSN:11-5649/F
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 中国中国科技核心期刊
  • 被引量:881