构建了具有太阳能蓄能功能的零排放分布式能量系统,并进行了运行参数优化和性能分析。该系统将槽式集热器吸收的太阳能和甲醇作为能量的输入,利用甲醇水蒸气重整制取清洁的氢源,以连续不间断的质子交换膜燃料电池发电作为分布式系统的能量输出。通过数值仿真分析,研究了不同水醇比、太阳辐射强度、进料速度等运行参数对太阳能一甲醇制氢产率的影响规律。在原料等量的情况下,比较了独立运行的直接甲醇燃料电池和太阳能热发电的总发电量与该集成系统的发电量,并分析了太阳能辐射强度变化对集成系统效率的影响。
A distributed energy system with the function of solar energy storage is proposed. Methanol and solar energy absorbed by trough receiver serve as the system input, which generate pure hydrogen through methanol steam reforming. The electricity power generated by proton exchange membrane fuel cell(PEMFC) acts as the system output. The influences of different solar radiation flux, mole ratio of water/methanol and inlet velocity on methanol steam reforming integrating solar energy are studied. In addition, a comparison of electric power generation between the combined system with the separate power generation of direct methanol fuel cell (DMFC) and thermal solar power generation is studied. The influence of varying solar radiation flux on the operating performance of the system is also obtained.