位置:成果数据库 > 期刊 > 期刊详情页
Numerical Simulation of Gas-Solid Flow in Square Cyclone Separators with Downward Exit
  • ISSN号:0253-2409
  • 期刊名称:《燃料化学学报》
  • 时间:0
  • 分类:TQ038.2[化学工程] TJ012.1[兵器科学与技术—兵器发射理论与技术]
  • 作者机构:School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
  • 相关基金:Sponsored by the National Natural Science Foundation of China(Grant No.51176042 and 21276056)
中文摘要:

Two-phase flow modeling of solid propellants has great potential for simulating and predicting the ballistic parameters in closed vessel tests as well as in guns. This paper presents a numerical model describing the combustion of a solid propellant in a closed chamber and takes into account what happens in such twophase,unsteady,reactive-flow systems. The governing equations are derived in the form of coupled,non-linear axisymmetric partial differential equations. The governing equations with customized parameters are implemented into Ansys Fluent 14. 5. The presented solutions predict the pressure profile inside the closed chamber. The results show that the present code adequately predicts the pressure-time history. The numerical results are in agreement with the experimental results. Some discussions are given regarding the effect of the grain shape and the sensitivity of these predictions to the initial pressure of the solid propellant bed. The study demonstrates the capability of using the present model implemented into Fluent,to simulate the combustion of solid propellants in a closed vessel and,eventually,the interior ballistic process in guns.

英文摘要:

Two-phase flow modeling of solid propellants has great potential for simulating and predicting the ballistic parameters in closed vessel tests as well as in guns. This paper presents a numerical model describing the combustion of a solid propellant in a closed chamber and takes into account what happens in such twophase,unsteady,reactive-flow systems. The governing equations are derived in the form of coupled,non-linear axisymmetric partial differential equations. The governing equations with customized parameters are implemented into Ansys Fluent 14. 5. The presented solutions predict the pressure profile inside the closed chamber. The results show that the present code adequately predicts the pressure-time history. The numerical results are in agreement with the experimental results. Some discussions are given regarding the effect of the grain shape and the sensitivity of these predictions to the initial pressure of the solid propellant bed. The study demonstrates the capability of using the present model implemented into Fluent,to simulate the combustion of solid propellants in a closed vessel and,eventually,the interior ballistic process in guns.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《燃料化学学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国化学会 中国科学院山西煤炭化学研究所
  • 主编:王建国
  • 地址:太原市桃园南路27号中国科学院山西煤炭化学研究所
  • 邮编:030001
  • 邮箱:rlhx@sxicc.ac.cn
  • 电话:0351-2025214
  • 国际标准刊号:ISSN:0253-2409
  • 国内统一刊号:ISSN:14-1140/TQ
  • 邮发代号:22-50
  • 获奖情况:
  • 获国家优秀期刊三等奖,中科院优秀期刊二等奖,华北优秀期刊奖和山西省一级期刊,《中国学术期刊(光盘版)检索与评价资料规范》优秀奖,2001年获新闻出版总署授予的“中国期刊方阵“双效...,连续十五年获山东省一级期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),波兰哥白尼索引,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:14785