为大、稀少的僵绳点问题,朱学习了为 non-Hermitian 僵绳点问题切开重复方法的概括本地 Hermitian 和 skew-Hermitian 的一个班[M.-Z. 朱, Appl。数学。Comput。218 (2012 ) 8816-8824 ] 。在这份报纸,我们进一步调查切开的概括本地 Hermitian 和 skew-Hermitian (GLHSS ) 为解决 non-Hermitian 的重复方法概括了僵绳点问题。与参数矩阵的不同选择,我们为保证这些反复的方法的集中导出条件。数字实验被介绍象 preconditioners 一样说明我们的 GLHSS 重复方法的有效性。[从作者抽象]
For large and sparse saddle point problems, Zhu studied a class of generalized local Hermitian and skew-Hermitian splitting iteration methods for non-Hermitian saddle point problem [M.-Z. Zhu, Appl. Math. Comput. 218 (2012) 8816-8824 ]. In this paper, we further investigate the generalized local Hermitian and skew-Hermitian splitting (GLHSS) iteration methods for solving non-Hermitian generalized saddle point problems. With different choices of the parameter matrices, we derive conditions for guaranteeing the con- vergence of these iterative methods. Numerical experiments are presented to illustrate the effectiveness of our GLHSS iteration methods as well as the preconditioners.